
Minimizing Total Flowtime and Maximum Earliness
on a Single Machine Using Multiple Measures of Fitness

Mary E. Kurz
Department of Industrial Engineering

Clemson University
110 Freeman Hall

Clemson, SC 29634-0920
864-656-4652

mkurz@clemson.edu

Sarah Canterbury
Department of Industrial Engineering

Clemson University
110 Freeman Hall

Clemson, SC 29634-0920

scanter@clemson.edu

ABSTRACT
The intent of this research is to investigate methods to use genetic
algorithms to find the set of efficient solutions to a bi-criteria
problem. We propose a general methodology which is characterized
by using different criteria upon which the decision to retain
chromosomes into the next generation is made. We perform elite
reproduction based on two general measures of “eliteness”: non-
dominated in the current population and performance measured in
terms of each criterion individually. We investigate its performance
on a specific bi-criteria scheduling problem, minimizing total
flowtime and maximum earliness on a single machine.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – heuristic methods, scheduling

General Terms
Algorithms, Experimentation

Keywords
Multicriteria genetic algorithm, bi-criteria scheduling

1. INTRODUCTION
The intent of this research is to investigate methods to use genetic
algorithms to find the set of efficient solutions to a bi-criteria
problem. We propose a general methodology which is characterized
by using different criteria upon which to keep chromosomes. We
perform elite reproduction based on two general measures of
“eliteness”: non-dominated in the current population and
performance measured in terms of each criterion individually. We
investigate its performance on a specific bi-criteria scheduling
problem, minimizing total flowtime and maximum earliness on a
single machine. We begin with a brief review of genetic algorithms
and describe the random keys genetic algorithm (RKGA) in Section
2. In Section 3, we introduce a bi-criteria RKGA, BRKGA. In
Section 4, we describe a bi-criteria single machine scheduling

problem and the problem specific decisions for BRKGA, as well as
a heuristic for the problem from the literature. Computational
results are described in Section 5, with conclusions and areas for
future research described in Section 6.

2. GENETIC ALGORITHMS
GAs were introduced in 1975 by Holland [5], who provided the
basic framework: chromosomes represent solutions that reproduce
based on how well they solve the problem at hand in a manner
analogous to survival of the fittest. The chromosomal
representation of a solution is an important design feature of a
genetic algorithm. Often, the chromosome is a string of 0s and 1s;
however, other possibilities exist, such as strings of non-negative
integers. The chromosomal representation of the solution
information can take many forms and influences the types of
genetic operators. Particularly readable introductions to GAs are
the texts by Michalewicz [11] and Goldberg [3]. Research
reported in the literature indicate the power and the limitations of
GAs, especially in the context of scheduling (for example, [1], [9],
[10], [15]). While we have seen the greatest use of GAs in single
criterion optimization, more researchers are using GAs in multi-
objective scheduling (for example, [6], [12], [13]).

Bean [1] has introduced an alternative method to encode problem
solutions using random numbers called a Random Keys Genetic
Algorithm (RKGA), which has been applied to numerous
problems. Recent applications include flexible flowlines with
sequence-dependent setup times [10] and batch-processing
machine scheduling problems [15]. RKGA differs from traditional
genetic algorithms most notably in the solution representation.
Random numbers serve as sort keys used to decode the
chromosome into a solution; all chromosomes can be decoded
into feasible solutions, resolving a problem common with other
representations (such as permutation) sometimes used for
scheduling. The decoded solution is evaluated with a fitness
function that is appropriate for the problem at hand. For example,
Norman and Bean [12] suggest using the following solution
representation for an identical multiple machine scheduling
problem. Each job is assigned a real number whose integer part is
the machine number to which the job is assigned and whose
fractional part is used to sort the jobs assigned to each machine.
Once the job assignments and order on each machine is found
through the decoding, a schedule can be built incorporating
additional factors such as nonzero ready times and sequence-
dependent setup times. An example chromosome for 6 jobs with 2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

803

machines is shown in Figure 1. Decoding this chromosome
indicates that jobs 2 and 4 will be processed by the first machine
and jobs 1, 3, 5, and 6 will be processed by the second machine.
Jobs 2 and 4 are assigned to the same machine in that order since
0.12 is less than 0.57. The order for machine 2 is found in a
similar manner. The sequence is shown in Figure 2.

Job 1 2 3 4 5 6
Gene 2.86 1.12 2.34 1.57 2.78 2.23

Figure 1: RKGA Chromosome Example

Machine 1 2 4
Machine 2 6 3 5 1

Figure 2: RKGA Chromosome Sequence Example

The genetic operators and related parameters used in Bean [1] are
summarized in the following. The initial population is generated
randomly. An elitist strategy is used for reproduction. Each
chromosome is decoded and the resulting solution is evaluated for
the performance measure. The 20% “best” chromosomes are
automatically copied to the next generation. Parametrized uniform
crossover is used to select the next 79% chromosomes in the next
generation. For each chromosome in the next generation, the
following is performed. Two chromosomes in the current
generation are selected at random. For each gene, a random
number is generated. If the value is less than 0.7, the value from
the “first” chromosome is copied to the new chromosome,
otherwise the value from the “second” chromosome is selected.
Figure 3 illustrates the crossover method.

Chromosome 1 23 03 45 89
Chromosome 2 15 45 85 03

Crossover Random
Number 0.45 0.23 0.68 0.75

New Chromosome 23 03 45 03
Figure 3: Example of parametric uniform crossover

The remaining 1% of the next generation is filled through
“immigration”, in which new chromosomes are randomly
generated. The above procedures are repeated until 100 iterations
have been performed without finding an improved schedule. The
values reported here were selected empirically for the particular
problem at hand.

The concept of efficient solutions is used to identify solutions that
may be desirable to a decision maker. A solution σ is weakly
efficient (with respect to the criteria of interest, here called 1z and

2z , which are to be minimized) if there is no other solution σ ′

such that () ()1 1z zσ σ ′< and () ()2 2z zσ σ ′< . A solution σ
is efficient if it is weakly efficient and at least one of the previous
relations holds as a strict inequality. We then say that solution σ ′
dominates solution σ . These definitions are easily extendable to
the multi-criteria case. The use of GAs in finding the set of
efficient solutions seems especially desirable because GAs evolve
sets of solutions and multi-criteria problem solvers may want the

entire set of efficient solutions. Since it is not guaranteed that any
heuristic will find optimal solutions to NP-hard single criterion
optimization problems, GAs can only find approximately efficient
solutions (AES) to multi-criteria optimization problems (this
terminology is used in [7]).

T’Kindt and Billaut [14] provide a survey of multicriteria
scheduling problems, organized by the complexity of the problem,
if known. Since the survey is organized in this way, it is hard to
see easily for which problems genetic algorithms or other specific
techniques have been attempted. Coello Coello and Mariano
Romero [2] provide a survey of evolutionary algorithms used in
multicriteria optimization, with analysis and identification of
future directions. Through these surveys and the literature citing
RKGA, we see that Bean’s RKGA has not been previously
applied to bi-criteria scheduling problems. We select the RKGA
type of encoding due to the fact that it always decodes into a
feasible sequence.

3. BICRITERIA RKGA (BRKGA)
This work primarily is concerned with the adaptation of RKGA to a
bi-criteria application. The general procedure is outlined below and
strongly resembles the basic RKGA methodology. In the interest of
space, we focus our attention on those steps that differ from RKGA,
namely steps 1, 4, 5, 6 and 7, and discuss these elements in detail
below.

1. Determine an upper bound for the number of
efficient solutions to the problem, if possible.

2. Initialize the population.
3. Evaluate the chromosomes in the population. Store

the values of each criterion separately.
4. Determine which chromosomes represent potential

efficient solutions. Call them the AES
chromosomes.

5. Perform multi-criteria elite reproduction.
6. Perform parametric uniform crossover.
7. Perform immigration.
8. Evaluate the chromosomes in the population.
9. Find the AES chromosomes.
10. If the stopping conditions have been met, STOP.

Otherwise, go to step 5.

3.1 Maximum Number of Efficient Solutions
As our overall intent is to identify the set of efficient solutions, we
should ensure that the population is large enough to hold the
entire set. If the objectives can be optimized individually and the
data is integer-valued, we can deduce that the set of efficient
solutions will have no more elements than one per integer point
between and including the extreme values of the individual
objective functions.

804

3.2 Identifying Approximately Efficient
Solutions

Because we are using a genetic algorithm, we cannot be sure that
a solution is truly an efficient solution. However, we can
determine if some solution in the current population is dominated
by other solutions. If a solution in the current population is not
strictly dominated by any other solution in the current population,
we will mark it as an approximately efficient solution (AES).

3.3 Multi-Criteria Elite Reproduction
We propose using two types of reproduction operations to perform
multi-criteria elite reproduction. This is the primary contribution of
this methodology. The first retains all of the AES chromosomes for
the next population. In this way, BRKGA can always keep the most
efficient chromosomes seen so far. The second type will be
traditional elite reproduction with respect to each of the criteria,
considering only the chromosomes that have not already been
selected for reproduction because of their AES status. We refer to
the maximum number of chromosomes kept from each of these
traditional elite reproductions as Zi_MAX_KEPT, replacing “Zi” by
the criteria of interest later. This reproduction operator is inspired by
the idea of population isolation [4], where two groups of
organisms are unable to mate because they are separated by some
physical distance or barrier. In BRKGA, the chromosomes were
chosen to survive to the next generation purely based on a one
dimensional measure of their worth so in some ways, we
performed criterion isolation.

3.4 Parametric Uniform Crossover
The parametric uniform crossover operator described above will
be used. However, the maximum number of chromosomes for the
new generation created using crossover will be set at
MAX_CROSS. If many solutions were kept in the AES
reproduction step, less than MAX_CROSS new chromosomes
may be created, in order that the new population has at most
POP_SIZE members.

3.5 Immigration
If less than POP_SIZE members are in the new population
following the parametric uniform crossover step, the remaining
members of the new generation will be formed through
immigration. Immigration may not be performed in every iteration
of BRKGA.

4. A BI-CRITERIA SCHEDULING
PROBLEM

This work addresses scheduling n jobs on a single machine to
minimize total flowtime and maximum earliness. The following
data are required as input:

ip = processing time of job i, i=1, …, n

id = due date of job i, i=1, …, n
The jobs are assumed to all be available at time 0 and all data is
integer. The work considered here does not allow idle time to be
inserted between jobs, so a single permutation of the n jobs is
sufficient to completely compute a schedule. Let σ denote a
sequence of the n jobs. The completion time of job i in sequence
σ , ()iC σ , is the sum of its processing time as well as the

processing times of all the jobs scheduled before it. The following
values can be computed:

()F σ = total flowtime of all jobs in sequence σ ;

() ()
1,...,

i
i n

F Cσ σ
=

= ∑

()iE σ = earliness of job i, i=1, …, n in sequence σ ;

() ()()max 0,i i iE d Cσ σ= −

()maxE σ = maximum earliness of all jobs in sequence

σ ; () (){ }max 1,...,
max ii n

E Eσ σ
=

=

Minimizing the total flowtime subject to an upper bound on the
maximum earliness (taking the epsilon-constraint approach) is
strongly NP-hard [7]. As genetic algorithms have proved to be an
effective method of finding good solutions to single criterion
optimization problems, we propose the use of genetic algorithms in
finding the set of efficient sequences. It is not guaranteed, however,
that genetic algorithms will find the optimal solutions to single
criterion optimization problems. For this reason, the proposed
method can only find approximately efficient sequences.

In this section, several previously known results, to which reference
will be made, are presented. Several papers have been published
addressing this particular single machine bicriteria scheduling
problem. This brief review only considers that work which most
directly relates to this paper. First, it is well known that ordering
jobs in non-decreasing order of processing times (SPT) is optimal
for minimizing total flowtime on a single machine. [6], [7] and [8]
consider minimizing both total flowtime and maximum earliness
on a single machine. Koksalan et al [7] develop a heuristic to
generate all approximately efficient sequences, based on the
epsilon-constraint version of the problem (finding good flowtime
solutions for a given maximum earliness value). They also
• Report that ordering jobs in non-decreasing order of slack

times (MST) is optimal for minimizing the maximum earliness
on a single machine with no inserted idle time. The slack time
of job i is i id p− .

• Prove that if i kp p< and i i k kd p d p− ≤ − , then job i
precedes job k in every efficient sequence.

• Give an upper bound on the number of efficient sequences.
Koksolan [8] locates some pre-defined number of non-dominated
sequences using the heuristic in [7] as a sub-procedure. Karasakal
and Koksalan [6] use simulated annealing to find the “best” total
flowtime for a given maximum earliness value.

We note that the approaches of [6], [7] and [8] differ from that
presented here in at least two ways. First, [6], [7] both solve
epsilon constraint versions of the problem. Two extreme values
for the maximum earliness are used to generate a list of all
possible values for maximum earliness in the set of efficient
solutions. Then, the heuristic or simulating annealing approach is
used to find the “best” value of the total flowtime possible with
each potential maximum earliness value. This is possible because
there are known optimal sequences for each of the criteria
considered individually. This approach may not extend to the case

805

where neither criteria can be easily optimized when considered
alone. [8] can only identify at most the preselected number of
efficient sequences. We evaluate BRKGA in comparison to the
heuristic approach proposed in [7].

4.1 Problem Specific Implementation
Decisions

In this section we describe the problem specific decisions, such as
how solutions are represented, how the maximum number of
efficient solutions possible can be known for this problem, and
stopping criteria.

4.1.1 Solution Representation, Decoding and
Evaluation

As we are considering a single machine environment, it is sufficient
to only use the random keys portion for sorting. We will use one
integer for each job, which will be sorted in increasing order. Figure
4 illustrates a chromosome for a five job example and the resulting
job order.

Chromosome 23 3 45 33 4

Job order 2 5 1 4 3
Figure 4: Example chromosome and decoding

Once the chromosome has been decoded, a job order results. This
job order is then used to calculate the total flowtime and maximum
earliness that results from the schedule. Recall that Koksalan et al
[7] show that if i kp p< and i i k kd p d p− ≤ − , then job i
precedes job k in every efficient sequence. This rule is applied to
every job order as it is evaluated; the resulting interchanges are also
applied to the chromosome that generated the job order. In this way,
we utilize the problem specific information.

4.1.2 Maximum Number of Efficient Solutions
In this test application, either criterion can be optimized
individually with simple rules; SPT (shortest processing time) for
the total flowtime and MST (minimum slack time) for the
maximum earliness, as described earlier. Koksalan et al [7] state
that the maximum number of efficient solutions is bounded by the
minimum of two values. Let Emax(MST) be the (optimal)
maximum earliness found by utilizing the MST sequence and
Emax(SPT) be the maximum earliness found by utilizing the SPT
sequence and breaking ties in processing times with the MST rule.
Also, let F(SPT) be the total flowtime found utilizing the SPT
sequence. They note that an efficient sequence with the maximum
total flowtime value F(P) can be found by solving the problem P:
minimize the total flowtime subject to the constraint that the
maximum earliness is exactly Emax(MST). Despite the fact that
this problem cannot be solved easily because it is NP-hard, we do
know that the number of efficient sequences is no more than

() () () (){ }min 1, 1F P F SPT Emax SPT Emax MST− + − + .
Because the range of flowtime values is much larger than the
range of maximum earliness values, we will use
MAX_ES= () () 1Emax SPT Emax MST− + as the maximum
number of efficient sequences.

4.1.3 Population Initialization
The initial population is generated randomly. The population size
will be constant after every generation has been created and will be
called POP_SIZE. In the case that MAX_ES>POP_SIZE (meaning
that the population may not be able to hold one AES per potential
efficient solution), we will use POP_SIZE = 2*MAX_ES.

4.1.4 Reproduction
We propose using three reproduction operations. The first retains all
of the AES chromosomes for the next population. In this way,
BRKGA can always keep the most efficient chromosomes seen so
far. The other reproduction operations will be traditional elite
reproduction with respect to each of the criteria, considering only
the chromosomes that have not already been selected for
reproduction because of their AES status. We will set the maximum
number of chromosomes kept from each of these traditional elite
reproductions at FT_MAX_KEPT and EMAX_MAX_KEPT.

4.1.5 Stopping Criteria
The stopping criteria were selected to be evaluating a maximum
number of chromosomes MAX_EVAL or the number of AES’s
equals MAX_ES. The maximum number of chromosome
evaluations is a common stopping criteria; the variation seen in
different GA runs which use this stopping criteria can be used to
evaluate whether the GA appears to be run long enough or not.
The second criteria was decided upon in the faint hope that many,
many AES’s would be generated. While the first type of
reproduction keeps all AES’s in the current population, the
number of AES’s may not increase monotonically through the run
of BRKGA. Since MAX_ES is an upper bound on the number of
true efficient solutions, it doesn’t seem unreasonable that finding
that many AESs would indicate that BRKGA had done a good
job.

4.2 Heuristic by Koksalan, Azizoglu and
Kondacki

In [7] (pg. 194), a heuristic is given to “generate all approximately
efficient sequences” for the problem to minimize the flowtime and
maximum earliness on a single machine. We call this procedure
“KAK” and repeat the steps here for the convenience of the
reader.

1. Calculate Emax(MST), Emax(SPT) and let k=1. If
Emax(MST) = Emax(SPT), stop. Otherwise, let E =
Emax(SPT) – 1.

2. Find an AES to the problem P: Min F subject to Emax ≤ E
using the following rule:

For t = 1 to n, Let tS be the set of jobs whose earliness
values do not exceed E when assigned to position t given
the set of jobs assigned to the first t-1 positions. Let

{ }* arg min :i ti p i S= ∈ , breaking ties according to the
MST rule. Assign i* to position t.

Let k = k +1 and Emax* be the maximum earliness of the
sequence found. If Emax* = Emax(MST), stop. “All distinct
AESs are generated”; there are k of these. Otherwise, go to
Step 3.

3. Let E = Emax* – 1 and go to Step 2.

806

5. COMPUTATIONAL EXPERIENCE
In order to investigate the proposed BRKGA, a small set of
experiments was undertaken. The data generated has the same
characteristics as that in [7]. Processing times have either low or
high variability: times are taken from a discrete uniform
distribution [1,10] for the low processing time files and from a
discrete uniform distribution [1,30] for the high processing time
files. Due dates are generated after the processing times are
generated from a discrete uniform distribution

() ()1 , 12 2i i
R Rp pτ τ − − − + ∑ ∑ where τ (controlling

tardiness) and R (controlling the due date range) take on different
values, as shown in Table 1. 10 problem instances with 50, 100,
150 and 200 jobs each are generated, resulting in 400 problem
instances total.

Table 1: Problem set definitions
Problem set τ R

I 0.20 0.60
II 0.20 1.00
III 0.50 0.60
IV 0.50 1.00
V 0.65 0.20

All algorithms were implemented in C, compiled with Microsoft
Visual C++ and run on a PC with a Pentium IV 2.8 GHz
processor with 512 MB of RAM. KAK was run once per problem,
as it is a deterministic algorithm. BRKGA was run on each
problem five times with different random number seeds, with the
parameter values shown in Table 2. We also ran BRKGA once
with a much higher number of evaluations allowed – ten times
MAX_EVAL chromosome evaluations were allowed. The total
running time for one run of the 400 files was over 52 hours, but
we provide the results of this single run for comparison purposes.
We refer to the BRKGA results with the lower number of
maximum evaluations as “Short BRKGA” and the BRKGA
results with the higher number of maximum evaluations as “Long
BRKGA”.

Table 2: BRKGA settings
POP_SIZE Min(400, 2*MAX_ES)

FT_MAX_KEPT 0.10 * POP_SIZE
EMAX_MAX_KEPT 0.10 * POP_SIZE

MAX_CROSS 0.70 * POP_SIZE
MAX_EVAL (short) 500 * POP_SIZE
MAX_EVAL (long) 10 * 500 * POP_SIZE

It is difficult to assess the performance of heuristics on multi-
criteria problems, as discussed by Coello Coello and Mariano
Romero [2]. In order to assess the effectiveness of BRKGA, we
compiled the following information. We report all performance as
a percentage of MAX_ES and group the results by the level of the
processing time variability (low or high), the number of jobs and
the problem set. Each number is the average of the 10 problem
instances per problem type.

In Table 3 and Table 4, we consider the performance of the
heuristics individually, meaning that we compute the ratio of

AESs found to MAX_ES without considering if any other
heuristic found dominating AESs. We report the average values
over the ten problem instances for KAK and Long BRKGA. For
the five Short BRKGA runs, we report the average percentage as
well as the best percentage over the five runs, averaged over the
ten problem instances for each problem type.

Table 3: Percentage of AESs found, low variability case
 Long Short BRKGA

NumJobs Prob Set KAK BRKGA Avg Best
50 I 20.14% 74.82% 53.53% 63.31%

 II 5.16% 54.19% 34.77% 40.65%
 III 14.32% 47.97% 10.31% 10.98%
 IV 5.72% 15.15% 6.68% 7.11%
 V 13.73% 54.94% 45.67% 57.94%

100 I 17.80% 49.00% 11.64% 12.20%
 II 7.10% 12.17% 4.79% 5.20%
 III 21.36% 6.13% 3.52% 4.06%
 IV 18.75% 65.63% 56.00% 66.88%
 V 6.91% 64.80% 37.57% 45.07%

150 I 4.99% 52.38% 10.98% 12.02%
 II 1.92% 17.28% 6.78% 7.36%
 III 3.08% 52.69% 37.85% 41.92%
 IV 11.32% 39.32% 9.87% 10.90%
 V 25.28% 16.71% 5.58% 6.08%

200 I 11.00% 10.17% 3.72% 4.07%
 II 4.08% 85.71% 69.39% 75.51%
 III 2.78% 65.74% 52.78% 61.11%
 IV 6.58% 57.89% 40.79% 65.79%
 V 2.94% 65.20% 35.39% 42.65%

Table 4: Percentage of AESs found, high variability case

 Long Short BRKGA
NumJobs Prob Set KAK BRKGA Avg Best

50 I 8.54% 45.61% 14.10% 16.34%
 II 8.37% 8.06% 3.84% 4.24%
 III 4.00% 6.19% 2.14% 2.62%
 IV 1.08% 3.23% 1.35% 1.56%
 V 8.80% 19.41% 7.15% 7.54%

100 I 6.09% 4.99% 2.41% 2.79%
 II 10.45% 2.66% 1.03% 1.11%
 III 4.68% 1.91% 0.76% 0.82%
 IV 3.24% 47.06% 36.29% 48.82%
 V 3.42% 8.66% 4.01% 4.53%

150 I 3.16% 5.24% 2.27% 2.65%
 II 1.27% 3.65% 1.47% 1.71%
 III 5.95% 17.42% 7.72% 8.56%
 IV 7.46% 5.70% 2.37% 2.92%
 V 5.13% 3.77% 1.50% 1.83%

200 I 6.80% 2.28% 0.82% 1.00%
 II 2.13% 47.52% 45.82% 57.45%
 III 4.63% 53.40% 31.11% 37.96%
 IV 4.06% 49.89% 7.90% 9.26%
 V 1.84% 13.36% 5.34% 6.84%

807

KAK never found more than 40% of the MAX_ES potential
efficient solutions, while Long BRKGA found over 90% of the
MAX_ES potential efficient solutions for one particular problem.
However, Long BRKGA had trouble with some problem
instances, once finding only 1.49% of the MAX_ES potential
efficient solutions, while KAK found 4.44% for that particular
problem. Interestingly, the Best Short BRKGA run sometimes
found more AES solutions than the Long BRKGA run, despite the
much larger number of chromosomes evaluated in Long BRKGA.

The different number of AESs found and reflected in Table 3 and
Table 4 does not indicate the quality of these solutions, however.
For this reason, we combined all seven sets of AESs found for
each problem instance and determined the non-dominated
solutions in the combined list. We compute various figures based
on this set and report them in Table 5 and Table 6. In the third
column, we show the number of AESs in the superset of all AESs
found, reported as a percentage of MAX_ES. The last three
columns indicate the percentage of AESs in the superset
attributable to KAK, the Long BRKGA run or any of the Short
BRKGA runs; these three columns add up to 100% in each case.

Table 5: Percentage of non-dominated AESs found, low

variability case

NumJobs Prob Set % found KAK
Long

BRKGA
Short

BRKGA
50 I 65.72% 0.36% 34.39% 65.25%

 II 52.46% 10.25% 34.42% 55.33%
 III 43.59% 11.15% 88.85% 0.00%
 IV 19.05% 25.72% 74.28% 0.00%
 V 61.90% 11.84% 27.04% 61.12%

100 I 48.50% 20.61% 79.14% 0.26%
 II 20.56% 56.19% 43.81% 0.00%
 III 17.52% 68.24% 31.76% 0.00%
 IV 65.69% 1.19% 25.97% 72.84%
 V 50.83% 5.19% 29.41% 65.39%

150 I 51.98% 10.94% 89.06% 0.00%
 II 20.33% 30.13% 69.87% 0.00%
 III 55.01% 7.82% 21.43% 70.75%
 IV 45.20% 16.56% 83.44% 0.00%
 V 22.40% 43.97% 56.03% 0.00%

200 I 17.67% 67.49% 32.51% 0.00%
 II 80.99% 0.00% 86.26% 13.74%
 III 60.21% 0.00% 43.21% 56.79%
 IV 50.25% 0.00% 40.14% 59.86%
 V 48.96% 2.73% 51.26% 46.01%

In Table 5 and Table 6, we often see that the Short BRKGA runs
often find no solutions that ended up in the set of non-dominated
AESs, despite having five runs in which those solutions could
have been found. For the number “0” to appear in Table 5 and
Table 6, an algorithm must have not found even one AES in the
superset in any of the 10 files whose performance is summarized
in one cell; KAK and Short BRKGA obviously fall into this
category, while Long BRKGA sometimes found no AESs in the
superset in some individual problem instances. In individual
problem instances, KAK sometimes found up to 95% of the AESs
in the superset while Long BRKGA and Short BRKGA
sometimes found 100% of the AESs in the super set.

Table 6: Percentage of non-dominated AESs found, high

variability case

NumJobs Prob Set % found KAK
Long

BRKGA
Short

BRKGA
50 I 39.41% 0.32% 68.50% 31.18%

 II 11.81% 28.88% 71.12% 0.00%
 III 7.30% 56.96% 43.04% 0.00%
 IV 7.28% 67.09% 32.91% 0.00%
 V 23.91% 8.34% 91.15% 0.52%

100 I 10.35% 70.45% 29.55% 0.00%
 II 7.16% 72.55% 27.45% 0.00%
 III 7.42% 85.96% 14.04% 0.00%
 IV 39.83% 0.12% 87.40% 12.47%
 V 9.69% 22.58% 77.42% 0.00%

150 I 7.41% 55.04% 44.96% 0.00%
 II 4.78% 66.99% 33.01% 0.00%
 III 22.40% 4.29% 95.71% 0.00%
 IV 8.47% 59.13% 40.87% 0.00%
 V 8.50% 74.62% 25.38% 0.00%

200 I 6.85% 84.23% 15.77% 0.00%
 II 47.99% 0.00% 24.21% 75.79%
 III 35.69% 0.00% 30.09% 69.91%
 IV 34.68% 0.00% 100.00% 0.00%
 V 19.31% 0.60% 99.40% 0.00%

The running time of KAK was never more than 0.16 seconds.
The running times of the Short BRKGA runs were very consistent
in the same problem instance, as the stopping criteria was based
primarily on the number of chromosomes evaluated; no problem
resulted in MAX_ES AESs being found. The running time of
Long BRKGA is significantly longer than the Short BRKGA runs,
reflecting the stopping criteria being ten times more chromosome
evaluations. When the processing times have low variability, the
running times tend to be lower than when the processing times
have high variability. However, this may be due to the fact that
the mean processing time is also higher in the case of high
variability in processing times.

808

Table 7: Average running times of BRKGA runs
 Processing Times Variability
 Low High

NumJobs Prob Set
Long

BRKGA
Short

BRKGA
Long

BRKGA
Short

BRKGA
50 I 86.27 10.70 118.46 16.02

 II 167.00 20.88 415.35 45.70
 III 369.81 54.80 726.32 75.39
 IV 688.22 79.78 1094.23 111.52
 V 86.40 10.63 168.00 23.27

100 I 231.45 36.46 489.00 52.75
 II 549.62 63.73 813.90 86.15
 III 881.63 91.31 1166.86 121.47
 IV 101.58 11.15 119.89 18.39
 V 225.11 20.94 448.56 48.97

150 I 382.97 54.10 726.98 76.59
 II 691.93 80.54 1029.87 107.05
 III 85.93 11.43 171.65 24.32
 IV 237.95 38.37 523.70 57.04
 V 524.77 63.34 811.46 87.73

200 I 857.21 91.29 1162.30 125.92
 II 103.59 14.31 100.75 12.62
 III 198.53 25.76 190.19 23.72
 IV 277.83 37.16 477.31 57.36
 V 374.30 48.27 722.31 80.26

6. CONCLUSIONS
In this paper, we have presented an adaptation of RKGA to bi-
criteria optimization and investigated its performance on a
specific single machine bi-criteria scheduling problem. The
research presented here contributes to the multi-objective
scheduling literature by adapting RKGA to multi-objective
problems, most notably by using two types of elite reproduction
which do not use the same type of measure of fitness. A
deterministic heuristic from the literature for the problem, referred
herein as KAK, was implemented for comparison to the GA-based
approaches. Despite the claim that KAK would find all AESs, the
GA-based approaches found AESs that dominated the KAK
solutions. Nonetheless, KAK found some solutions that remained
in the superset of non-dominated AESs, considering all the AESs
found by the algorithms. Clearly, in this problem, there is value
in deterministic and meta-heuristics for this problem. Further
research will be conducted to investigate whether applying a GA
to the epsilon-constraint version of the problem is effective,
following the approach of [6] in which simulated annealing is
performed for each potential value of the maximum earliness to
minimize total flowtime, as well as introducing the KAK solutions
as initial members of the population in the GA-based approach.

7. REFERENCES
[1] Bean, J.C., Genetic algorithms and random keys for

sequencing and optimization, ORSA Journal on Computing,
6, 1994, 154-160.

[2] Coello Coello, C.A. and Mariano Romero, C.E. Multicriteria
scheduling problems, In Multiple criteria optimization: state
of the art annotated bibliography surveys, Eds. M. Ehrgott
and X. Gandibleux. Kluwer, Boston, 2002, 445-491.

[3] Goldberg, D.E., Genetic algorithms in search, optimization,
and machine learning, Addison-Wesley, Reading, MA.
1989.

[4] Halliburton, R., Introduction to Population Genetics, Pearson
Prentice Hall, Upper Saddle River, NJ. 2004.

[5] Holland, J., Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor. 1975.

[6] Karasakal, E.K. and Koksalan, M.,A simulated annealing
approach to bicriteria scheduling problems on a single
machine, Journal of Heuristics, 6(3), 2000, 311-327.

[7] Koksalan, M., Azizoglu, M., and Kondakci, S.K.,
Minimizing flowtime and maximum earliness on a single
machine, IIE Transactions, 30(2) 1998, 192-200.

[8] Koksalan, M.M., A heuristic approach to bicriteria
scheduling, Naval Research Logistics, 46(7), 1999, 777-789.

[9] Kurz, M.E. and Askin, R.G., Heuristic Scheduling of Parallel
Machines with Sequence-dependent Setup Times,
International Journal of Production Research, 39(16), 2001,
3747-3769.

[10] Kurz, M.E. and Askin, R.G., Scheduling flexible flow lines
with sequence-dependent setup times, European Journal of
Operational Research, 159(1), 2004, 66-82.

[11] Michalewicz, Z., Genetic algorithms + data structures =
evolution programs, Springer-Verlag, Berlin. 1992.

[12] Norman, B.A. and Bean, J.C., A genetic algorithm
methodology for complex scheduling problems, Naval
Research Logistics, 46, 1999, 199-211.

[13] Rangsaritratsamee, R., Ferrell, W., and Kurz, M., Dynamic
rescheduling using a bicriteria objective with genetic local
search, Computers and Industrial Engineering, 46(1), 2004,
1-15.

[14] T’Kindt, V. and Billaut, J.-C., Multicriteria scheduling
problems, In Multiple criteria optimization: state of the art
annotated bibliography surveys, Eds. M. Ehrgott and X.
Gandibleux. Kluwer, Boston, 2002, 445-491.

[15] Wang, C-S. and Uzsoy, R., A genetic algorithm to minimize
maximum lateness on a batch processing machine,
Computers & Operations Research, 29, 2002, 1621-1640.

809

