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ABSTRACT 
The intent of this research is to investigate methods to use genetic 
algorithms to find the set of efficient solutions to a bi-criteria 
problem. We propose a general methodology which is characterized 
by using different criteria upon which the decision to retain 
chromosomes into the next generation is made.  We perform elite 
reproduction based on two general measures of “eliteness”: non-
dominated in the current population and performance measured in 
terms of each criterion individually.  We investigate its performance 
on a specific bi-criteria scheduling problem, minimizing total 
flowtime and maximum earliness on a single machine. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods, scheduling  

General Terms 
Algorithms, Experimentation 

Keywords 
Multicriteria genetic algorithm, bi-criteria scheduling 

1. INTRODUCTION 
The intent of this research is to investigate methods to use genetic 
algorithms to find the set of efficient solutions to a bi-criteria 
problem. We propose a general methodology which is characterized 
by using different criteria upon which to keep chromosomes.  We 
perform elite reproduction based on two general measures of 
“eliteness”: non-dominated in the current population and 
performance measured in terms of each criterion individually.  We 
investigate its performance on a specific bi-criteria scheduling 
problem, minimizing total flowtime and maximum earliness on a 
single machine.  We begin with a brief review of genetic algorithms 
and describe the random keys genetic algorithm (RKGA) in Section 
2.  In Section 3, we introduce a bi-criteria RKGA, BRKGA.  In 
Section 4, we describe a bi-criteria single machine scheduling 

problem and the problem specific decisions for BRKGA, as well as 
a heuristic for the problem from the literature.  Computational 
results are described in Section 5, with conclusions and areas for 
future research described in Section 6. 

2. GENETIC ALGORITHMS 
GAs were introduced in 1975 by Holland [5], who provided the 
basic framework: chromosomes represent solutions that reproduce 
based on how well they solve the problem at hand in a manner 
analogous to survival of the fittest. The chromosomal 
representation of a solution is an important design feature of a 
genetic algorithm. Often, the chromosome is a string of 0s and 1s; 
however, other possibilities exist, such as strings of non-negative 
integers. The chromosomal representation of the solution 
information can take many forms and influences the types of 
genetic operators. Particularly readable introductions to GAs are 
the texts by Michalewicz [11] and Goldberg [3]. Research 
reported in the literature indicate the power and the limitations of 
GAs, especially in the context of scheduling (for example, [1], [9], 
[10], [15]). While we have seen the greatest use of GAs in single 
criterion optimization, more researchers are using GAs in multi-
objective scheduling (for example, [6], [12], [13]). 
 
Bean [1] has introduced an alternative method to encode problem 
solutions using random numbers called a Random Keys Genetic 
Algorithm (RKGA), which has been applied to numerous 
problems. Recent applications include flexible flowlines with 
sequence-dependent setup times [10] and batch-processing 
machine scheduling problems [15]. RKGA differs from traditional 
genetic algorithms most notably in the solution representation. 
Random numbers serve as sort keys used to decode the 
chromosome into a solution; all chromosomes can be decoded 
into feasible solutions, resolving a problem common with other 
representations (such as permutation) sometimes used for 
scheduling. The decoded solution is evaluated with a fitness 
function that is appropriate for the problem at hand. For example, 
Norman and Bean [12] suggest using the following solution 
representation for an identical multiple machine scheduling 
problem. Each job is assigned a real number whose integer part is 
the machine number to which the job is assigned and whose 
fractional part is used to sort the jobs assigned to each machine. 
Once the job assignments and order on each machine is found 
through the decoding, a schedule can be built incorporating 
additional factors such as nonzero ready times and sequence-
dependent setup times. An example chromosome for 6 jobs with 2 
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machines is shown in Figure 1. Decoding this chromosome 
indicates that jobs 2 and 4 will be processed by the first machine 
and jobs 1, 3, 5, and 6 will be processed by the second machine. 
Jobs 2 and 4 are assigned to the same machine in that order since 
0.12 is less than 0.57. The order for machine 2 is found in a 
similar manner. The sequence is shown in Figure 2. 

 
Job 1 2 3 4 5 6 
Gene 2.86 1.12 2.34 1.57 2.78 2.23 

Figure 1: RKGA Chromosome Example 
 

Machine 1 2 4   
Machine 2 6 3 5 1 

Figure 2: RKGA Chromosome Sequence Example 
 
The genetic operators and related parameters used in Bean [1] are 
summarized in the following. The initial population is generated 
randomly. An elitist strategy is used for reproduction. Each 
chromosome is decoded and the resulting solution is evaluated for 
the performance measure. The 20% “best” chromosomes are 
automatically copied to the next generation. Parametrized uniform 
crossover is used to select the next 79% chromosomes in the next 
generation. For each chromosome in the next generation, the 
following is performed. Two chromosomes in the current 
generation are selected at random. For each gene, a random 
number is generated. If the value is less than 0.7, the value from 
the “first” chromosome is copied to the new chromosome, 
otherwise the value from the “second” chromosome is selected. 
Figure 3 illustrates the crossover method.  

 
Chromosome 1 23 03 45 89 
Chromosome 2 15 45 85 03 

Crossover Random 
Number 0.45 0.23 0.68 0.75 

New Chromosome  23 03 45 03 
Figure 3: Example of parametric uniform crossover 

 
The remaining 1% of the next generation is filled through 
“immigration”, in which new chromosomes are randomly 
generated. The above procedures are repeated until 100 iterations 
have been performed without finding an improved schedule. The 
values reported here were selected empirically for the particular 
problem at hand.  

 

The concept of efficient solutions is used to identify solutions that 
may be desirable to a decision maker. A solution σ  is weakly 
efficient (with respect to the criteria of interest, here called 1z  and 

2z , which are to be minimized) if there is no other solution σ ′  

such that ( ) ( )1 1z zσ σ ′<  and ( ) ( )2 2z zσ σ ′< . A solution σ  
is efficient if it is weakly efficient and at least one of the previous 
relations holds as a strict inequality. We then say that solution σ ′  
dominates solution σ . These definitions are easily extendable to 
the multi-criteria case. The use of GAs in finding the set of 
efficient solutions seems especially desirable because GAs evolve 
sets of solutions and multi-criteria problem solvers may want the 

entire set of efficient solutions. Since it is not guaranteed that any 
heuristic will find optimal solutions to NP-hard single criterion 
optimization problems, GAs can only find approximately efficient 
solutions (AES) to multi-criteria optimization problems (this 
terminology is used in [7]). 

 

T’Kindt and Billaut [14] provide a survey of multicriteria 
scheduling problems, organized by the complexity of the problem, 
if known. Since the survey is organized in this way, it is hard to 
see easily for which problems genetic algorithms or other specific 
techniques have been attempted. Coello Coello and Mariano 
Romero [2] provide a survey of evolutionary algorithms used in 
multicriteria optimization, with analysis and identification of 
future directions.  Through these surveys and the literature citing 
RKGA, we see that Bean’s RKGA has not been previously 
applied to bi-criteria scheduling problems. We select the RKGA 
type of encoding due to the fact that it always decodes into a 
feasible sequence. 

3. BICRITERIA RKGA (BRKGA) 
This work primarily is concerned with the adaptation of RKGA to a 
bi-criteria application. The general procedure is outlined below and 
strongly resembles the basic RKGA methodology. In the interest of 
space, we focus our attention on those steps that differ from RKGA, 
namely steps 1, 4, 5, 6 and 7, and discuss these elements in detail 
below. 

1. Determine an upper bound for the number of 
efficient solutions to the problem, if possible. 

2. Initialize the population. 
3. Evaluate the chromosomes in the population. Store 

the values of each criterion separately. 
4. Determine which chromosomes represent potential 

efficient solutions. Call them the AES 
chromosomes. 

5. Perform multi-criteria elite reproduction. 
6. Perform parametric uniform crossover. 
7. Perform immigration. 
8. Evaluate the chromosomes in the population. 
9. Find the AES chromosomes. 
10. If the stopping conditions have been met, STOP. 

Otherwise, go to step 5. 

3.1 Maximum Number of Efficient Solutions 
As our overall intent is to identify the set of efficient solutions, we 
should ensure that the population is large enough to hold the 
entire set. If the objectives can be optimized individually and the 
data is integer-valued, we can deduce that the set of efficient 
solutions will have no more elements than one per integer point 
between and including the extreme values of the individual 
objective functions.  
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3.2 Identifying Approximately Efficient 
Solutions 

Because we are using a genetic algorithm, we cannot be sure that 
a solution is truly an efficient solution. However, we can 
determine if some solution in the current population is dominated 
by other solutions. If a solution in the current population is not 
strictly dominated by any other solution in the current population, 
we will mark it as an approximately efficient solution (AES).  

3.3 Multi-Criteria Elite Reproduction 
We propose using two types of reproduction operations to perform 
multi-criteria elite reproduction. This is the primary contribution of 
this methodology.  The first retains all of the AES chromosomes for 
the next population. In this way, BRKGA can always keep the most 
efficient chromosomes seen so far. The second type will be 
traditional elite reproduction with respect to each of the criteria, 
considering only the chromosomes that have not already been 
selected for reproduction because of their AES status. We refer to 
the maximum number of chromosomes kept from each of these 
traditional elite reproductions as Zi_MAX_KEPT, replacing “Zi” by 
the criteria of interest later. This reproduction operator is inspired by 
the idea of population isolation [4], where two groups of 
organisms are unable to mate because they are separated by some 
physical distance or barrier. In BRKGA, the chromosomes were 
chosen to survive to the next generation purely based on a one 
dimensional measure of their worth so in some ways, we 
performed criterion isolation.  

3.4 Parametric Uniform Crossover 
The parametric uniform crossover operator described above will 
be used. However, the maximum number of chromosomes for the 
new generation created using crossover will be set at 
MAX_CROSS. If many solutions were kept in the AES 
reproduction step, less than MAX_CROSS new chromosomes 
may be created, in order that the new population has at most 
POP_SIZE members. 

3.5 Immigration 
If less than POP_SIZE members are in the new population 
following the parametric uniform crossover step, the remaining 
members of the new generation will be formed through 
immigration. Immigration may not be performed in every iteration 
of BRKGA. 

4. A BI-CRITERIA SCHEDULING 
PROBLEM 

This work addresses scheduling n jobs on a single machine to 
minimize total flowtime and maximum earliness. The following 
data are required as input: 

ip  = processing time of job i, i=1, …, n 

id  = due date of job i, i=1, …, n 
The jobs are assumed to all be available at time 0 and all data is 
integer. The work considered here does not allow idle time to be 
inserted between jobs, so a single permutation of the n jobs is 
sufficient to completely compute a schedule. Let σ  denote a 
sequence of the n jobs. The completion time of job i in sequence 
σ , ( )iC σ , is the sum of its processing time as well as the 

processing times of all the jobs scheduled before it. The following 
values can be computed: 

( )F σ  = total flowtime of all jobs in sequence σ ; 

( ) ( )
1,...,

i
i n

F Cσ σ
=

= ∑  

( )iE σ  = earliness of job i, i=1, …, n in sequence σ ; 

( ) ( )( )max 0,i i iE d Cσ σ= −  

( )maxE σ  = maximum earliness of all jobs in sequence 

σ ; ( ) ( ){ }max 1,...,
max ii n

E Eσ σ
=

=  

 
Minimizing the total flowtime subject to an upper bound on the 
maximum earliness (taking the epsilon-constraint approach) is 
strongly NP-hard [7]. As genetic algorithms have proved to be an 
effective method of finding good solutions to single criterion 
optimization problems, we propose the use of genetic algorithms in 
finding the set of efficient sequences. It is not guaranteed, however, 
that genetic algorithms will find the optimal solutions to single 
criterion optimization problems. For this reason, the proposed 
method can only find approximately efficient sequences. 
 
In this section, several previously known results, to which reference 
will be made, are presented. Several papers have been published 
addressing this particular single machine bicriteria scheduling 
problem. This brief review only considers that work which most 
directly relates to this paper. First, it is well known that ordering 
jobs in non-decreasing order of processing times (SPT) is optimal 
for minimizing total flowtime on a single machine. [6], [7] and [8] 
consider minimizing both total flowtime and maximum earliness 
on a single machine. Koksalan et al [7] develop a heuristic to 
generate all approximately efficient sequences, based on the 
epsilon-constraint version of the problem (finding good flowtime 
solutions for a given maximum earliness value). They also  
• Report that ordering jobs in non-decreasing order of slack 

times (MST) is optimal for minimizing the maximum earliness 
on a single machine with no inserted idle time. The slack time 
of job i is i id p− . 

• Prove that if i kp p<  and i i k kd p d p− ≤ − , then job i 
precedes job k in every efficient sequence. 

• Give an upper bound on the number of efficient sequences. 
Koksolan [8] locates some pre-defined number of non-dominated 
sequences using the heuristic in [7] as a sub-procedure. Karasakal 
and Koksalan [6] use simulated annealing to find the “best” total 
flowtime for a given maximum earliness value. 
 
We note that the approaches of [6], [7] and [8] differ from that 
presented here in at least two ways. First, [6], [7] both solve 
epsilon constraint versions of the problem. Two extreme values 
for the maximum earliness are used to generate a list of all 
possible values for maximum earliness in the set of efficient 
solutions. Then, the heuristic or simulating annealing approach is 
used to find the “best” value of the total flowtime possible with 
each potential maximum earliness value. This is possible because 
there are known optimal sequences for each of the criteria 
considered individually. This approach may not extend to the case 
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where neither criteria can be easily optimized when considered 
alone. [8] can only identify at most the preselected number of 
efficient sequences. We evaluate BRKGA in comparison to the 
heuristic approach proposed in [7]. 

4.1 Problem Specific Implementation 
Decisions 

In this section we describe the problem specific decisions, such as 
how solutions are represented, how the maximum number of 
efficient solutions possible can be known for this problem, and 
stopping criteria. 

4.1.1 Solution Representation, Decoding and 
Evaluation 

As we are considering a single machine environment, it is sufficient 
to only use the random keys portion for sorting. We will use one 
integer for each job, which will be sorted in increasing order. Figure 
4 illustrates a chromosome for a five job example and the resulting 
job order. 
 

Chromosome 23 3 45 33 4 
      

Job order 2 5 1 4 3 
Figure 4: Example chromosome and decoding 

 
Once the chromosome has been decoded, a job order results. This 
job order is then used to calculate the total flowtime and maximum 
earliness that results from the schedule. Recall that Koksalan et al 
[7] show that if i kp p<  and i i k kd p d p− ≤ − , then job i 
precedes job k in every efficient sequence. This rule is applied to 
every job order as it is evaluated; the resulting interchanges are also 
applied to the chromosome that generated the job order. In this way, 
we utilize the problem specific information. 

4.1.2 Maximum Number of Efficient Solutions 
In this test application, either criterion can be optimized 
individually with simple rules; SPT (shortest processing time) for 
the total flowtime and MST (minimum slack time) for the 
maximum earliness, as described earlier. Koksalan et al [7] state 
that the maximum number of efficient solutions is bounded by the 
minimum of two values. Let Emax(MST) be the (optimal) 
maximum earliness found by utilizing the MST sequence and 
Emax(SPT) be the maximum earliness found by utilizing the SPT 
sequence and breaking ties in processing times with the MST rule. 
Also, let F(SPT) be the total flowtime found utilizing the SPT 
sequence. They note that an efficient sequence with the maximum 
total flowtime value F(P) can be found by solving the problem P: 
minimize the total flowtime subject to the constraint that the 
maximum earliness is exactly Emax(MST). Despite the fact that 
this problem cannot be solved easily because it is NP-hard, we do 
know that the number of efficient sequences is no more than 

( ) ( ) ( ) ( ){ }min 1, 1F P F SPT Emax SPT Emax MST− + − + . 
Because the range of flowtime values is much larger than the 
range of maximum earliness values, we will use 
MAX_ES= ( ) ( ) 1Emax SPT Emax MST− +  as the maximum 
number of efficient sequences. 
 

4.1.3 Population Initialization 
The initial population is generated randomly. The population size 
will be constant after every generation has been created and will be 
called POP_SIZE. In the case that MAX_ES>POP_SIZE (meaning 
that the population may not be able to hold one AES per potential 
efficient solution), we will use POP_SIZE = 2*MAX_ES. 

4.1.4 Reproduction 
We propose using three reproduction operations. The first retains all 
of the AES chromosomes for the next population. In this way, 
BRKGA can always keep the most efficient chromosomes seen so 
far. The other reproduction operations will be traditional elite 
reproduction with respect to each of the criteria, considering only 
the chromosomes that have not already been selected for 
reproduction because of their AES status. We will set the maximum 
number of chromosomes kept from each of these traditional elite 
reproductions at FT_MAX_KEPT and EMAX_MAX_KEPT. 

4.1.5 Stopping Criteria 
The stopping criteria were selected to be evaluating a maximum 
number of chromosomes MAX_EVAL or the number of AES’s 
equals MAX_ES. The maximum number of chromosome 
evaluations is a common stopping criteria; the variation seen in 
different GA runs which use this stopping criteria can be used to 
evaluate whether the GA appears to be run long enough or not. 
The second criteria was decided upon in the faint hope that many, 
many AES’s would be generated. While the first type of 
reproduction keeps all AES’s in the current population, the 
number of AES’s may not increase monotonically through the run 
of BRKGA. Since MAX_ES is an upper bound on the number of 
true efficient solutions, it doesn’t seem unreasonable that finding 
that many AESs would indicate that BRKGA had done a good 
job. 

4.2 Heuristic by Koksalan, Azizoglu and 
Kondacki 

In [7] (pg. 194), a heuristic is given to “generate all approximately 
efficient sequences” for the problem to minimize the flowtime and 
maximum earliness on a single machine.  We call this procedure 
“KAK” and repeat the steps here for the convenience of the 
reader. 

1. Calculate Emax(MST), Emax(SPT) and let k=1.  If 
Emax(MST) = Emax(SPT), stop. Otherwise, let E = 
Emax(SPT) – 1. 

2. Find an AES to the problem P: Min F subject to Emax ≤ E 
using the following rule: 

For t = 1 to n, Let tS  be the set of jobs whose earliness 
values do not exceed E when assigned to position t given 
the set of jobs assigned to the first t-1 positions.  Let 

{ }* arg min :i ti p i S= ∈ , breaking ties according to the 
MST rule.  Assign i* to position t. 

Let k = k +1 and Emax* be the maximum earliness of the 
sequence found.  If Emax* = Emax(MST), stop.  “All distinct 
AESs are generated”; there are k of these.  Otherwise, go to 
Step 3. 

3. Let E = Emax* – 1 and go to Step 2. 
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5. COMPUTATIONAL EXPERIENCE 
In order to investigate the proposed BRKGA, a small set of 
experiments was undertaken. The data generated has the same 
characteristics as that in [7]. Processing times have either low or 
high variability: times are taken from a discrete uniform 
distribution [1,10] for the low processing time files and from a 
discrete uniform distribution [1,30] for the high processing time 
files. Due dates are generated after the processing times are 
generated from a discrete uniform distribution 

( ) ( )1 , 12 2i i
R Rp pτ τ − − − + ∑ ∑  where τ  (controlling 

tardiness) and R  (controlling the due date range) take on different 
values, as shown in Table 1. 10 problem instances with 50, 100, 
150 and 200 jobs each are generated, resulting in 400 problem 
instances total. 
 

Table 1: Problem set definitions 
Problem set τ  R  

I 0.20 0.60 
II 0.20 1.00 
III 0.50 0.60 
IV 0.50 1.00 
V 0.65 0.20 

 
All algorithms were implemented in C, compiled with Microsoft 
Visual C++ and run on a PC with a Pentium IV 2.8 GHz 
processor with 512 MB of RAM. KAK was run once per problem, 
as it is a deterministic algorithm. BRKGA was run on each 
problem five times with different random number seeds, with the 
parameter values shown in Table 2. We also ran BRKGA once 
with a much higher number of evaluations allowed – ten times 
MAX_EVAL chromosome evaluations were allowed. The total 
running time for one run of the 400 files was over 52 hours, but 
we provide the results of this single run for comparison purposes. 
We refer to the BRKGA results with the lower number of 
maximum evaluations as “Short BRKGA” and the BRKGA 
results with the higher number of maximum evaluations as “Long 
BRKGA”. 
 

Table 2: BRKGA settings 
POP_SIZE Min(400, 2*MAX_ES) 

FT_MAX_KEPT 0.10 * POP_SIZE 
EMAX_MAX_KEPT 0.10 * POP_SIZE 

MAX_CROSS 0.70 * POP_SIZE 
MAX_EVAL (short) 500 * POP_SIZE 
MAX_EVAL (long) 10 * 500 * POP_SIZE 

 
It is difficult to assess the performance of heuristics on multi-
criteria problems, as discussed by Coello Coello and Mariano 
Romero [2].  In order to assess the effectiveness of BRKGA, we 
compiled the following information. We report all performance as 
a percentage of MAX_ES and group the results by the level of the 
processing time variability (low or high), the number of jobs and 
the problem set. Each number is the average of the 10 problem 
instances per problem type. 
 
In Table 3 and Table 4, we consider the performance of the 
heuristics individually, meaning that we compute the ratio of 

AESs found to MAX_ES without considering if any other 
heuristic found dominating AESs. We report the average values 
over the ten problem instances for KAK and Long BRKGA. For 
the five Short BRKGA runs, we report the average percentage as 
well as the best percentage over the five runs, averaged over the 
ten problem instances for each problem type. 
 

Table 3: Percentage of AESs found, low variability case 
   Long Short BRKGA 

NumJobs Prob Set KAK BRKGA Avg Best 
50 I 20.14% 74.82% 53.53% 63.31% 

 II 5.16% 54.19% 34.77% 40.65% 
 III 14.32% 47.97% 10.31% 10.98% 
 IV 5.72% 15.15% 6.68% 7.11% 
 V 13.73% 54.94% 45.67% 57.94% 

100 I 17.80% 49.00% 11.64% 12.20% 
 II 7.10% 12.17% 4.79% 5.20% 
 III 21.36% 6.13% 3.52% 4.06% 
 IV 18.75% 65.63% 56.00% 66.88% 
 V 6.91% 64.80% 37.57% 45.07% 

150 I 4.99% 52.38% 10.98% 12.02% 
 II 1.92% 17.28% 6.78% 7.36% 
 III 3.08% 52.69% 37.85% 41.92% 
 IV 11.32% 39.32% 9.87% 10.90% 
 V 25.28% 16.71% 5.58% 6.08% 

200 I 11.00% 10.17% 3.72% 4.07% 
 II 4.08% 85.71% 69.39% 75.51% 
 III 2.78% 65.74% 52.78% 61.11% 
 IV 6.58% 57.89% 40.79% 65.79% 
 V 2.94% 65.20% 35.39% 42.65% 

 
Table 4: Percentage of AESs found, high variability case 

   Long Short BRKGA 
NumJobs Prob Set KAK BRKGA Avg Best 

50 I 8.54% 45.61% 14.10% 16.34% 
 II 8.37% 8.06% 3.84% 4.24% 
 III 4.00% 6.19% 2.14% 2.62% 
 IV 1.08% 3.23% 1.35% 1.56% 
 V 8.80% 19.41% 7.15% 7.54% 

100 I 6.09% 4.99% 2.41% 2.79% 
 II 10.45% 2.66% 1.03% 1.11% 
 III 4.68% 1.91% 0.76% 0.82% 
 IV 3.24% 47.06% 36.29% 48.82% 
 V 3.42% 8.66% 4.01% 4.53% 

150 I 3.16% 5.24% 2.27% 2.65% 
 II 1.27% 3.65% 1.47% 1.71% 
 III 5.95% 17.42% 7.72% 8.56% 
 IV 7.46% 5.70% 2.37% 2.92% 
 V 5.13% 3.77% 1.50% 1.83% 

200 I 6.80% 2.28% 0.82% 1.00% 
 II 2.13% 47.52% 45.82% 57.45% 
 III 4.63% 53.40% 31.11% 37.96% 
 IV 4.06% 49.89% 7.90% 9.26% 
 V 1.84% 13.36% 5.34% 6.84% 
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KAK never found more than 40% of the MAX_ES potential 
efficient solutions, while Long BRKGA found over 90% of the 
MAX_ES potential efficient solutions for one particular problem.  
However, Long BRKGA had trouble with some problem 
instances, once finding only 1.49% of the MAX_ES potential 
efficient solutions, while KAK found 4.44% for that particular 
problem. Interestingly, the Best Short BRKGA run sometimes 
found more AES solutions than the Long BRKGA run, despite the 
much larger number of chromosomes evaluated in Long BRKGA. 

 

The different number of AESs found and reflected in Table 3 and 
Table 4 does not indicate the quality of these solutions, however.  
For this reason, we combined all seven sets of AESs found for 
each problem instance and determined the non-dominated 
solutions in the combined list.  We compute various figures based 
on this set and report them in Table 5 and Table 6.  In the third 
column, we show the number of AESs in the superset of all AESs 
found, reported as a percentage of MAX_ES.  The last three 
columns indicate the percentage of AESs in the superset 
attributable to KAK, the Long BRKGA run or any of the Short 
BRKGA runs; these three columns add up to 100% in each case. 

 
Table 5: Percentage of non-dominated AESs found, low 

variability case 

NumJobs Prob Set % found  KAK 
Long 

BRKGA 
Short 

BRKGA 
50 I 65.72% 0.36% 34.39% 65.25% 

 II 52.46% 10.25% 34.42% 55.33% 
 III 43.59% 11.15% 88.85% 0.00% 
 IV 19.05% 25.72% 74.28% 0.00% 
 V 61.90% 11.84% 27.04% 61.12% 

100 I 48.50% 20.61% 79.14% 0.26% 
 II 20.56% 56.19% 43.81% 0.00% 
 III 17.52% 68.24% 31.76% 0.00% 
 IV 65.69% 1.19% 25.97% 72.84% 
 V 50.83% 5.19% 29.41% 65.39% 

150 I 51.98% 10.94% 89.06% 0.00% 
 II 20.33% 30.13% 69.87% 0.00% 
 III 55.01% 7.82% 21.43% 70.75% 
 IV 45.20% 16.56% 83.44% 0.00% 
 V 22.40% 43.97% 56.03% 0.00% 

200 I 17.67% 67.49% 32.51% 0.00% 
 II 80.99% 0.00% 86.26% 13.74% 
 III 60.21% 0.00% 43.21% 56.79% 
 IV 50.25% 0.00% 40.14% 59.86% 
 V 48.96% 2.73% 51.26% 46.01% 

 
 
 

In Table 5 and Table 6, we often see that the Short BRKGA runs 
often find no solutions that ended up in the set of non-dominated 
AESs, despite having five runs in which those solutions could 
have been found.  For the number “0” to appear in Table 5 and 
Table 6, an algorithm must have not found even one AES in the 
superset in any of the 10 files whose performance is summarized 
in one cell; KAK and Short BRKGA obviously fall into this 
category, while Long BRKGA sometimes found no AESs in the 
superset in some individual problem instances. In individual 
problem instances, KAK sometimes found up to 95% of the AESs 
in the superset while Long BRKGA and Short BRKGA 
sometimes found 100% of the AESs in the super set. 

 
Table 6: Percentage of non-dominated AESs found, high 

variability case 

NumJobs Prob Set % found KAK 
Long 

BRKGA 
Short 

BRKGA 
50 I 39.41% 0.32% 68.50% 31.18% 

 II 11.81% 28.88% 71.12% 0.00% 
 III 7.30% 56.96% 43.04% 0.00% 
 IV 7.28% 67.09% 32.91% 0.00% 
 V 23.91% 8.34% 91.15% 0.52% 

100 I 10.35% 70.45% 29.55% 0.00% 
 II 7.16% 72.55% 27.45% 0.00% 
 III 7.42% 85.96% 14.04% 0.00% 
 IV 39.83% 0.12% 87.40% 12.47% 
 V 9.69% 22.58% 77.42% 0.00% 

150 I 7.41% 55.04% 44.96% 0.00% 
 II 4.78% 66.99% 33.01% 0.00% 
 III 22.40% 4.29% 95.71% 0.00% 
 IV 8.47% 59.13% 40.87% 0.00% 
 V 8.50% 74.62% 25.38% 0.00% 

200 I 6.85% 84.23% 15.77% 0.00% 
 II 47.99% 0.00% 24.21% 75.79% 
 III 35.69% 0.00% 30.09% 69.91% 
 IV 34.68% 0.00% 100.00% 0.00% 
 V 19.31% 0.60% 99.40% 0.00% 

 
The running time of KAK was never more than 0.16 seconds.  
The running times of the Short BRKGA runs were very consistent 
in the same problem instance, as the stopping criteria was based 
primarily on the number of chromosomes evaluated; no problem 
resulted in MAX_ES AESs being found.  The running time of 
Long BRKGA is significantly longer than the Short BRKGA runs, 
reflecting the stopping criteria being ten times more chromosome 
evaluations.  When the processing times have low variability, the 
running times tend to be lower than when the processing times 
have high variability.  However, this may be due to the fact that 
the mean processing time is also higher in the case of high 
variability in processing times. 
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Table 7: Average running times of BRKGA runs 
  Processing Times Variability 
  Low High 

NumJobs Prob Set 
Long 

BRKGA 
Short 

BRKGA 
Long 

BRKGA 
Short 

BRKGA 
50 I 86.27 10.70 118.46 16.02 

 II 167.00 20.88 415.35 45.70 
 III 369.81 54.80 726.32 75.39 
 IV 688.22 79.78 1094.23 111.52 
 V 86.40 10.63 168.00 23.27 

100 I 231.45 36.46 489.00 52.75 
 II 549.62 63.73 813.90 86.15 
 III 881.63 91.31 1166.86 121.47 
 IV 101.58 11.15 119.89 18.39 
 V 225.11 20.94 448.56 48.97 

150 I 382.97 54.10 726.98 76.59 
 II 691.93 80.54 1029.87 107.05 
 III 85.93 11.43 171.65 24.32 
 IV 237.95 38.37 523.70 57.04 
 V 524.77 63.34 811.46 87.73 

200 I 857.21 91.29 1162.30 125.92 
 II 103.59 14.31 100.75 12.62 
 III 198.53 25.76 190.19 23.72 
 IV 277.83 37.16 477.31 57.36 
 V 374.30 48.27 722.31 80.26 

 

6. CONCLUSIONS 
In this paper, we have presented an adaptation of RKGA to bi-
criteria optimization and investigated its performance on a 
specific single machine bi-criteria scheduling problem. The 
research presented here contributes to the multi-objective 
scheduling literature by adapting RKGA to multi-objective 
problems, most notably by using two types of elite reproduction 
which do not use the same type of measure of fitness. A 
deterministic heuristic from the literature for the problem, referred 
herein as KAK, was implemented for comparison to the GA-based 
approaches.  Despite the claim that KAK would find all AESs, the 
GA-based approaches found AESs that dominated the KAK 
solutions.  Nonetheless, KAK found some solutions that remained 
in the superset of non-dominated AESs, considering all the AESs 
found by the algorithms.  Clearly, in this problem, there is value 
in deterministic and meta-heuristics for this problem.  Further 
research will be conducted to investigate whether applying a GA 
to the epsilon-constraint version of the problem is effective, 
following the approach of [6] in which simulated annealing is 
performed for each potential value of the maximum earliness to 
minimize total flowtime, as well as introducing the KAK solutions 
as initial members of the population in the GA-based approach. 
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